TY - CHAP M1 - Book, Section TI - Cell Cycle Control: An Overview A1 - Clurman, Bruce E. A1 - Roberts, James M. A2 - Valle, David L. A2 - Antonarakis, Stylianos A2 - Ballabio, Andrea A2 - Beaudet, Arthur L. A2 - Mitchell, Grant A. PY - 2019 T2 - The Online Metabolic and Molecular Bases of Inherited Disease AB - The process of cell reproduction is known as the cell cycle.1-3 Usually the cell cycle produces two progeny, or daughter cells, that closely resemble their parent and who are themselves capable of repeating the process. For this to occur, three things are necessary: replication of the genome; a doubling of cell mass (where cell mass refers generally to all cellular components other than chromosomes); and a precise segregation of chromosomes plus a more or less equal distribution of other cell components to the daughter cells. The execution of these events divides the cell cycle into four phases: chromosomes are replicated during S (synthetic) phase; cell constituents are segregated to daughter cells during M (mitotic) phase; and two G (gap) phases intervene between S and M. G1 precedes S phase, and G2 precedes mitosis (Fig. 34-1). Thus, chromosome replication and segregation are confined to discrete intervals of the cell cycle, whereas the third essential component of cell reproduction—growth—occurs continuously in G1, S, G2, and M. It is during G1 and G2 that cells typically respond to the proliferative and antiproliferative signals that determine whether the cell cycle ought to proceed (signals such as growth factors and cytokines). In this way, the cell cycle has the option of stopping within G1 and G2 without interrupting the critical and precarious events of chromosome replication and chromosome segregation. SN - PB - McGraw-Hill Education CY - New York, NY Y2 - 2024/03/28 UR - ommbid.mhmedical.com/content.aspx?aid=1181413460 ER -