Skip to Main Content

We have a new app!

Take the Access library with you wherever you go—easy access to books, videos, images, podcasts, personalized features, and more.

Download the Access App here: iOS and Android


  • Peroxisomes are subcellular organelles present in virtually every eukaryotic cell catalysing a range of essential metabolic functions mainly related to lipid metabolism. These include: (a) fatty acid β-oxidation; (b) etherphospholipid biosynthesis; (c) fatty acid α-oxidation; (d) isoprenoid biosynthesis; (e) L-pipecolate degradation; (f) glutaryl-CoA metabolism; (g) H2O2-metabolism; and (i) glyoxylate detoxification.

  • Peroxisomes catalyze the β-oxidation of a variety of fatty acids and fatty acid derivatives which can not be handled by mitochondria. The most important substrates for peroxisomal β-oxidation from a patient's point of view are (a) very long chain fatty acids, (b) pristanic acid as derived predominantly from phytanic acid, and (c) di- and trihydroxycholestanoic acid. The latter two compounds are produced from cholesterol in the liver and undergo β-oxidation in the peroxisome to produce the CoA-esters of chenodeoxycholic and cholic acid, respectively. This implies that “bile acid synthesis” represents in fact a degradative mechanism involving β-oxidation rather than a true biosynthetic process.

  • To date, four defined disorders of peroxisomal fatty acid β-oxidation have been identified: (a) acyl-CoA oxidase deficiency (MIM 264470); (b) D-bifunctional protein deficiency (MIM 261515); (c) peroxisomal thiolase deficiency (MIM 261510); and (d) 2-methylacyl-CoA racemase deficiency. Interestingly, the clinical presentation of the first three disorders resembles that of the peroxisome biogenesis disorders (PBDs) in many respects. This is especially true for D-bifunctional protein deficiency since virtually all patients identified sofar (>40) show severe clinical abnormalities including hypotonia, craniofacial dysmorphia, neonatal seizures, hepatomegaly, and developmental delay. Most patients with D-bifunctional protein (D-BP) deficiency die in the first year of life. A remarkable observation is that patients with D-BP deficiency often show disordered neuronal migration.

  • 2-Methylacyl-CoA racemase deficiency is a newly identified disorder of peroxisomal β-oxidation in which only the oxidation of the 2-methyl branched-chain fatty acids pristanic acid and di- and trihydroxycholestanoic acid is impaired. In contrast to patients with acyl-CoA oxidase deficiency or any of the other β-oxidation deficiencies, patients with racemase deficiency do not present early in life, but instead develop a late-onset neuropathy.

  • Diagnosis of a peroxisomal β-oxidation disorder is based on clinical characteristics combined with a series of tests to assess peroxisomal function. Analysis of very long chain fatty acids is a reliable initial screening method. If abnormal, additional tests should be done in plasma (di- and trihydroxycholestanoic, phytanic, and pristanic acid) and erythrocytes (plasmalogens). Flowcharts may be helpful in reaching the correct diagnosis, which always requires detailed studies in fibroblasts, including enzyme analyses, complementation studies, and molecular analyses.

  • Prenatal diagnosis of the various β-oxidation disorders can be done reliably because methods have now been developed that allow analysis in direct chorionic villous material. This obviates the risk associated with culturing chorionic villous cells.

  • A second major function of peroxisomes involves the biosynthesis of ether-linked phospholipids, which differ from the regular diacyl phospholipids in one major aspect, which is the ether-bond at the sn-1 position of the glycerol backbone. The first two enzymatic steps in etherphospholipid synthesis take place in peroxisomes and are ...

Pop-up div Successfully Displayed

This div only appears when the trigger link is hovered over. Otherwise it is hidden from view.