Skip to Main Content
  • Become an Access Reviewer
  • Clinical Phenotypes
  • OMMBID Advisory banner
  • Ommbid banner
  • Ommbid latest banner



  1. The mouse, as a prototypical mammal, has been the subject of systematic experimental investigation for the last century. An ever-enlarging number of mouse mutations exist that provide models for human genetic disorders, and the mouse has become an increasingly important tool for dissecting the molecular basis of common acquired disease states. The most frequently used approaches to modifying the mouse genome are microinjection of purified DNA and homologous recombination in embryonic stem cells.

  2. The laboratory mouse provides a number of advantages as an experimental system. It is small and hence inexpensive to keep under well-controlled environmental conditions. Mice produce abundant offspring following a short gestation, allowing for large sample sizes, and there exist numerous inbred strains available for selective breeding strategies. The mouse shares many metabolic and developmental pathways with humans, and there are syntenic relationships over much of its genome that correspond to those of humans. Numerous reagents exist for gene mapping and identification, and because of historic interests, there are frequently multiple alleles at a given locus. Complex genetic interactions can be examined using selected compound alleles, double mutations, and strain-specific modifiers. Genetic mechanisms such as haploinsufficiency, 1 digenic inheritance, 2 and imprinting, 3, 4 can be experimentally dissected in the mouse.

  3. Mice can also be used as recipients for human tissues such as bone marrow, and can be genetically “humanized” via the introduction of human alleles, whether disease associated or conferring disease resistance. This may represent single genes or more recently large regions of DNA, and even chromosomal fragments. The development of standardized behavioral testing and an ever-expanding understanding of mouse behavior has provided a means for defining the genetic and molecular basis of learning and memory, an increasingly achievable goal for the future. The mouse is also a unique resource for the development of phenotype driven genetic screens for mutant genes when mutagenesis is coupled to a standardized battery of assessments such as behavioral, sensory, biochemical, and physiological testing.

Want remote access to your institution's subscription?

Sign in to your MyAccess profile while you are actively authenticated on this site via your institution (you will be able to verify this by looking at the top right corner of the screen - if you see your institution's name, you are authenticated). Once logged in to your MyAccess profile, you will be able to access your institution's subscription for 90 days from any location. You must be logged in while authenticated at least once every 90 days to maintain this remote access.


About MyAccess

If your institution subscribes to this resource, and you don't have a MyAccess profile, please contact your library's reference desk for information on how to gain access to this resource from off-campus.

Subscription Options

OMMBID Full Site: One-Year Subscription

Connect to the full suite of OMMBID content including new and revised chapters that reflect the latest research, image galleries, clinical phenotypes, and more.

$295 USD
Buy Now

Pay Per View: Timed Access to all of OMMBID

24 Hour Subscription $34.95

Buy Now

48 Hour Subscription $54.95

Buy Now

Pop-up div Successfully Displayed

This div only appears when the trigger link is hovered over. Otherwise it is hidden from view.